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Abstract. We present a discrete iterative interpolation
scheme (DIIS) to improve the convergence rate of
electrostatic calculations in the polarizable continuum
model (PCM) to describe solvent effects on molecular
solutes. The electrostatic calculations may easily become
the bottleneck of the calculation when the solute size is
large. For large molecules iterative procedures turn out
to be computationally more convenient than matrix
inversion or closure methods. The DIIS scheme is
compared here to another iterative procedure (DAMP)
and to the biconjugate gradient (BCG) method. The
comparisons show that DIIS leads to a sizeable saving of
computational time for the C-PCM and IEF-PCM
methods (average 40%) compared to DAMP, and more
than 50% with respect to the BCG method.

Key words: Polarizable continuum model — Discrete
iterative interpolation scheme — Conjugate gradient
method — Molecular electrostatic

1 Introduction

The continuum solvent model is the origin of several
useful computational methods for describing chemistry
in condensed phases.

One of the strong points of this approach is the sharp
reduction in the number of degrees of freedom one has
to consider in treating a chemical problem in the liquid
phase. Alternative methods, such as those based on
computer simulations with explicit solvent, have to
monitor a by far larger number of degrees of freedom,
many of which have a very low direct influence on the
final results. The heavy computational demand of such
methods reduces their field of applicability.

A second strong point of the continuum approach is
its versatility: continuum methods can be coupled to
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almost all molecular structure methods. Thus, the field
of applicability ranges from accurate calculations of
molecular properties at sophisticated levels of quantum
mechanical (QM) theory to molecular mechanics calcu-
lations on molecules of very large size.

There exist at present a large number of continuum
solvent procedures [1, 2], some expecially useful for
high-quality QM calculations for small molecules,
others addressing the problem of treating large solutes
at a semiclassical level, and a few equipped to treat
both large and small solutes over the whole range of
quality in the description of the solute. Among the last
of these there is the polarizable continuum model
(PCM) [1-4], for which we present here a procedure to
speed up the calculations. This procedure is based on
the discrete iterative interpolation scheme (DIIS) [5],
suggested years ago by Pulay to improve convergence
in iterative calculations. DIIS is currently widely used
in computational chemistry; it is available in compu-
tational packages, such as Gaussian [6], GAMESS [7],
and MOPAC [8], to improve the convergence of the
SCF cycle; a generalized version (GDIIS) is a powerful
geometry optimizer [9]. The extension of this proce-
dure to another problem is presented in the present
article.

The article is organized as follows:

1. The basic PCM method is summarized, with attention
to the different versions presently available for
merging with DIIS to solve the electrostatic problem.

2. The DIIS-PCM procedure is compared to a simple
damping procedure and to the biconjugate gradient
(BCG) method.

2 Basic outlines of the PCM

The model is composed of a subsystem (the “solute’) in
which the necessary degrees of freedom are described in
a detailed way and another subsystem (the “‘solvent™),
which is described in terms of one or more continuous
distribution functions (no explicit degrees of freedom are
used in this part). As we have already said there are



many choices available for describing the solute, from
all-electrons all-nuclei in a QM version, to atoms alone
(or a part of them) in semiclassical versions. There is also
a large choice available for the continuous response
functions of the solvent, including interactions of
different types (electrostatic, dispersion, repulsion) and
local as well as nonlocal characteristics of the medium
(uniform homogeneous functions, position-dependent
response functions, anisotropic distributions) covering
various compositions of the solvent (pure solvent, mixed
solvent, ionic solutions).

The DIIS procedure can be applied to all cases, but
for simplicity we specialize the exposition to the basic
model of uniform isotropic solvent distributions with
interactions limited to the electrostatic component.
Within this limited model we shall pay more attention to
the application to solutes described at a low level. In fact
it is just the particular case of large solutes that has
motivated the implementation of DIIS-PCM, which is,
however, also beneficial for full QM calculations.

In electrostatic continuum methods the solute is
placed within a cavity in the solvent bulk, described as a
polarizable continuum. This cavity is delimited in the
more elaborate methods (such as the PCM) by a solvent
accessible surface (SAS) [10]. There are various ap-
proaches to define the solute—solvent interaction be-
tween a charge distribution and a surrounding dielectric.
In the PCM the apparent surface charge method is used.
In this method a surface charge distribution, g, is spread
on the SAS to fulfill the boundary condition:

oV Joi~ = eV Jont | (1)

where V is the electrostatic potential of the whole system
of charges (apparent and real), ¢ is the dielectric
constant, and 74 is the inward/outward unit orthogonal
vector to the surface. This boundary equation is solved
numerically by dissecting the SAS into a finite number of
elements, each characterized by a representative point,
7;, an orthogonal vector, 7;, and a surface area, S;. ¢ is
thus discretized into a finite set of point charges, q.

The resulting procedure corresponds to the solution
of a set of linear equations, which can be written in the
following matrix form:

Dq=¢ (2)

The vector q collects the unknown charges, and the
vector g and the matrix D have different forms in the
different PCM versions of the electrostatic problem.
In any version the q charges are used to define an
electrostatic interaction potential that gives an addition-
al contribution to the energy of the isolated molecule
and that modifies the charge distribution of the mole-
cules in the cases in which the model allows it; namely, in
quantum calculations and in classical mechanics calcu-
lations with force fields including polarization terms. In
these cases there will be an iterative loop to reach self-
consistency in the mutual solute—solvent polarization
effects. Our primary concern is to present a procedure to
speed up the first step of this procedure, the determina-
tion of the charges q. Actually there are different PCM
versions that uses different formulations of Eq. (2). The
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three versions in current use for the homogeneous
isotropic case are

1. D-PCM. This is the traditional formulation of the
PCM based on the direct application of electrostatics
as expressed in Egs. (1) and (2). The g elements are
the normal component of the electric field.

2. C-PCM. In this formulation the dielectric is approx-
imated by a conductor, with the appropriate bound-
ary condition (not corresponding to Eq. 1). The
resulting q values are uniformly scaled to fulfill the
Gauss theorem for the dielectric. The g elements are
the local values of the electric potential.

3. Integral equation formalism (IEF)-PCM. This is the
most sophisticated version, where the Green’s func-
tion formalism used in D-PCM is supplemented by
the use of Calderon operators [11, 12]. This advanced
mathematical treatment has a large spectrum of
applicability, including ionic solutions and liquid
crystals. The g elements are a linear combination
of the local values of the electric potential and the
normal of the components of the electric field. In the
case of isotropic solutions g can be expressed in
function of the electric potential only [13].

D-PCM is related to the original Miertus—Scrocco—
Tomasi version [3], C-PCM derives from Klamt and
Schiiirman semiempirical COSMO procedure [14],
reformulated with changes for the PCM at the ab initio
level by Barone and Cossi [15], and IEF-PCM has been
elaborated by Mennucci and coworkers [11, 12]. Each
formulation has different merits and defects.

D-PCM has the fastest spatial decay rate in the
charge—charge interactions (Table 1) but is the most
sensitive to the outlying solvent charge problem [16]. C-
PCM is faster, less sensitive to the outlying charge, but
less accurate for low e values. IEF-PCM is the most
accurate method over the whole range of solvent po-
larities and the least sensitive to outlying charges, but it
is more complex to handle and a bit more costly, even
in the version limited to isotropic liquids. The analyti-
cal expressions for D and g are reported in Table 1.
There are several similarities between the C-PCM and

Table 1. Analytical expressions of the diagonal and nondiagonal
elements of the D matrix and of the elements of the g vector (see
Eq. 2) for all the polarizable continuum model (PCM) versions

D-PCM C-PCM
Dyi#J it 7
e+1 Sk 4
Dy 2m + 2.14n, [5 107 \ /4
gi =Sz ¢ (7)) —¢(7)
IEF - PCM
—1 .
D=(GI-B) (B —Z551)A
Ayi#J =
Aii 1.07 \/47T/Si
Byji#j Siby -
A” J
Bi; Si 3%
gi —¢(7)
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IEF-PCM methods: they share the same expression for
g and

flilglc Dige—pcm = Dc-pem - (3)

Because these similarities also hold from a numeric point
of view, in the following we refer to potential methods
(PMs) for IEF-PCM and D-PCM and to the field
method (FM) for D-PCM. The classification is based
upon the nature of g that is correspondent to the
predominant nature of D.

Our experience in the use of these methods shows that
PMs give more accurate results but the nonlocal nature
of the off-diagonal part of D can lead to some numerical
problems. These problems are discussed in Sect. 3.

In the following we shall focus our attention on an
iterative solution of Eq. (2) and on its numerical beha-
viour. Thus, we do not treat the solutes at a QM level
(that would imply having two nested iterative proce-
dures), and so we shall limit ourselves to show, in the
section dedicated to numerical results, numerical evi-
dence regarding the effect of the DIIS procedure on
calculations of the PM and FM type at the semiclassical
level. The use of this procedure with QM levels does not
present problems, and acutally it has already been used
with satisfactory results in our laboratories.

At present the usual procedure to solve the electro-
static equation for the three versions of the PCM, as well
as of other similar methods, is based on a matrix
inversion:

q=D"'g . (4)

This procedure was introduced into the PCM by Hoshi
et al. [17] and was later adopted by us [18] to simplify the
calculation of analytical geometric derivatives [19],
replacing the preceding iterative version [3]. The inver-
sion procedure is computationally stable and its effec-
tiveness has been improved over the years. It remains,
however, relatively expensive, with a large asymptotic
scaling exponent, and it requires the allocation of
considerable computer memory. These aspects are not
serious drawbacks for high-quality QM calculations, but
they become more important when attention is shifted to
solutes of large size.

In recent years we have developed other approaches
that are able to give analytical expressions of the
geometry derivatives which alleviate this computational
problem. They are based on closure methods [20-22] and
on the iterative procedure again [23, 24]. The closure
methods are essentially extrapolations of the iterative
method that eliminate the inner loop in the iteration, but
in their present form they have memory requirements
similar to those of the inversion method. The most re-
cent iterative methods use a Jacobi partition scheme [25]
of the D matrix and can be implemented in a way that
does not require massive memory allocations [23, 24]. In
the present work we consider an improved iterative
method where the new feature is the use of the DIIS
interpolation scheme. As will be shown, this version
maintains the low memory requirement, and it signifi-
cantly reduces the number of iterations necessary to
reach convergence for PMs.

3 The DIIS-PCM method

Let us consider again the basic PCM electrostatic
equation; we introduce the following partition

D=Dy+D;, (5)

were Dy and D, contain the diagonal and off-diagonal
elements of D respectively. By considering the definitions
of the D matrix elements reported in Table 1 and
assuming typical values [26] of the following geometrical
parameters,

2
o 0
one has

\Di/Dyj| > 6.78]F; — 7| (7)
for FM and

% > 8.68]F — 7| (8)

)

for PMs. For a well-tessellated cavity the value of 7;; is of
the order of 0.5 A for first neighbours and at least double
for other couples of tesserae. Thus, there are very few i, j
pairs for which the diagonal and off-diagonal elements
of the D matrix have the same order or magnitude.

From the computational point of view the Jacobi it-
erative solution of a linear system works better if the
diagonal elements are larger than the off-diagonal ones.
This is true for FM and also, but less marked, for PMs.
This fact is fundamental for the evaluation of the com-
putational performances of the method proposed here
and it will be discussed extensively in the final section.

By neglecting D, we have a simple initial guess for the
charges:

q” =Dy'g . 9)

This guess can be refined iteratively according to the
Jacobi scheme [25]:

q"” =D;'(q” - Diq") , (10)

where the exponent (n) indicates the number of the
iterative cycle and

q=q"". (11)

The iterative scheme defined by this equation is the
simplest possible: each step depends only upon the
previous one.

In Ref. [23] a more complex procedure was intro-
duced:

¢ =q""+(1-2)q"?, (12)
where
1/e(=1
= /e (13)
1/e=1) 4 1/en-2)
and
e® — q _ qtk-1) (14)



If e® > e ) is set to 1. This is a typical DAMP
procedure, where the intrinsic oscillatory nature of a
iterative scheme is damped by retaining something from
the previous iterative step. The use of a fixed damping
procedure (where A is fixed and given in input) was
typical in SCF packages before the introduction of
DIIS.

The DIIS interpolation procedure generalizes the
two-step DAMP to an all-step procedure:

n—1
¢ => g . (15)
k=1

The weight factors, /4, are determined by a least-squares
procedure: the equation

n
Z }Vke(k)
k=1

i1s minimized under the constraint

iikzl . (17)
k=1

This is equivalent to minimizing the quantity

S(2) +u<iﬂvk - 1) (18)
k=1

or to solving the following linear system

2

S(2) = (16)

0 1 1 1 1
1 e o) e@.e) 3. el e . (1)
1 o). e o@.e® o). ROPe)
1 e .6 6.3 o0 .e0 NORS
1 e(U.e(") e(2> e(”) e(3).e("> e(") e(”)
u —1
A 0
A 0
A 0
|7 = (19)
A 0

The DIIS interpolation scheme is valid if and only if the
conditions

e =0 (20)
and
q" =q (21)

are equivalent [5].

449

The definition of e previously given satisfies this
requirement. In fact, rearranging Eq. (10), the relation-
ship

Dq™ =g+ Dje™ (22)
holds.

4 Comparisons with other methods

The discussion of convergence improvements is not
based upon ‘“‘conventional” results such as molecular
geometries, energies, and other molecular properties. A
convergence improver does not affect the accuracy of the
theory; it leads to the same results of the original
implementation, but it permits one to reduce the
numerical effort necessary to reach the result.

In this section the DIIS-like interpolation scheme is
compared to the previously adopted DAMP procedure
[23] and to a popular method to solve linear equations,
namely the BCG method [25]. So-called conjugate gra-
dient methods provide an alternative and quite general
procedure for solving linear systems, which has been
used recently in connection with Eq. (2). In particular
the BCG method is able to solve the nonsymmetric
linear system implied in the FM formulation using at
most N iterations. We have tested the BCG method by
using the subroutine /inbgc from Ref. [25].

The initial guess is, as for the Jacobi scheme, that
reported in Eq. (9).

The comparison is performed over a set of 108 mo-
lecules described at a classical level at a given geometry.
This set is derived from the G2 set of molecular
geometries [27]. We have removed from the original
set the molecular systems that are of little interest in
this framework: excited states, homonuclear diatomic
molecules, and radicals. The sources of molecular elec-
trostatics are partial atomic charges placed on every
atom. These charges are determined by the charge
equilibration method [28]. The criterion of convergence
is that the norm of the difference between q™ and
q™=1D_ when Nj is the number of iterations needed to
reach convergence, is less than 1.0 x 107°.

Comparisons between the DIIS method and the
DAMP and BCG methods are reported in Fig. 1. The
results are expressed as a percentage saving of effort:

% saving = 100(NZ — NP"S) Nz (23)

where x = DAMP or BCG. The mean saving percentage
and the mean number of iterations required to reach
convergence are reported in Table 2. We found no
relation between the type and size of the molecule and
the performance of each convergence improver.

The performance of the BCG method is poor both in
the PMs and FM formulations; furthermore each BCG
iteration is computationally more expensive than an
iterative step because it require a large number of
operations on vectors and matrices than the Jacobi
method. For this reason, the BCG performances will
not be further discussed.
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Fig. 1a-d. Comparison of the discrete iterative interpolation
scheme (DIIS) with other procedures in terms of percentage saving.
a DIIS versus DAMP (field method). b DIIS versus DAMP
(potential methods). ¢ DIIS versus the biconjugate gradient (BCG)
method (field method). d DIIS versus the BCG method (potential
method). The heights of the bars indicate the number of molecules
for which the percentage savings lie in the range reported on the
x-axis. The set is composed of 108 molecules

In the FM case, the advantage of using DIIS instead
of DAMP is very small. The first reason for this fact can
be found in Eq. (7): the elements of D; have a local
character; thus q(*) is a very good guess. In the FM case
the iterative procedure converges in both versions in less
than ten iterations in more than 95% of the cases
(Fig. 2). Furthermore an analysis of the 4; coefficients of
the DIIS interpolation shows that, at the /™ iteration

Table 2. Average saving and average number of iterations of the
discrete iterative interpolation scheme (D/IS) with respect to other
procedures, DAMP and the biconjugate gradient (BCG) method
for potential methods (PMs) and the field method (FM)

Average saving

PMs DIIS versus DAMP 39.7%
DIIS versus BCG 52.7%
FM DIIS versus DAMP 5.3%
DIIS versus BCG 52.1%
Average number of iterations
DIIS DAMP BCG
PMs 10.92 20.46 24.20
FM 4.96 5.33 10.92
120
1-5
100 | M 6-10
Wi-50
801
60
40+
201
G 1|
DHs DAMP DIIS DAMP GC GC
(CPCM)  (CPCM)}  (DPCM)  (DPCM) (DPCM)  (CPCM)

Fig. 2. Graphical comparison of DIIS with other procedures. For
each method/formulation the distribution in classes with respect the
number of iterations needed to reach the convergence threshold is
reported. The heights of the bars indicate the number of molecules
for which the number of iterations lies in the range reported in the
legend. The three ranges were chosen on the basis of the authors’
experience. They can be interpreted as fast (1-5), average (6-10),
and slow (11-50) rate of convergence

A1+ 2,1 is about 1. A synthesis of these considerations
is that in the FM case the iterative procedure is
intrinsically fast and cannot be significantly further
improved.

The PM case is very different. In this case the non-
local character of the Dy elements turn all the previous
arguments upside down. The initial guess is not so good
as in the FM and in the DAMP version more than
ten iterations are required to reach the convergence
threshold in about 95% of the cases. The introduction
of DIIS substantially improves the convergence prop-
erties of the iterative procedure (Fig. 2). In this case
almost all of the 4; coefficients are significantly different
from zero.

To test the behaviour of the DIIS method with
respect the solute size, a test calculation was performed
on a polyglycine peptide, in an all-trans configuration.
The number of residues starts from ten and, in steps of
ten, increases to 200. The DIIS procedure exhibits very
regular behaviour: all the calculations converge in seven
iterations for the FM and in 11 for the PMs. In contrast,
the DAMP procedure show a totally irregular pattern:



almost all the calculations (expecially for the PMs)
converge slowly or do not converge at all.

5 Conclusions

The introduction of DIIS does not significantly improve
the convergence rate of the FM iterative procedure but it
has very important consequences on the PM formulation
because it significantly reduces the number of iterations
required to reach the convergence threshold. This fast
iterative scheme combined with a fast way of computing
the iterative steps, like the fast multipole method [24, 29],
leads to a PCM implementation that is computationally
very efficient. This implementation can be coupled to
molecular mechanics and/or semiempirical methods
for which the traditional PCM procedures are too
expensive. The DIIS procedure exposed here has been
inserted into the development version of the Gaussian [6]
package.
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